
Custom Coder Utilities
by Stephen Posey

Delphi straight out of the box is
generally well thought out and

convenient to use, and its code
generation capabilities are actually
quite remarkable. Nonetheless,
there are a number of areas where
“template style” code operations
could be better facilitated. Fortu-
nately, with a bit of ingenuity, we
can use Delphi itself to improve
matters.

One tedious operation that I
found myself repeatedly perform-
ing was generating the skeletons
for the user defined methods in
Forms and Components I was
writing. I thought that it would be
great if Delphi had a procedure to
take the names of any new methods
I’d added to a class definition, and
then generate the skeleton heading
and begin...end; pair in the
implementation section, like it does
for event response methods. To
address this (at least to a minimal
extent) I’ve created MethGen, the
Method Generator, a pretty much
quick and dirty workhorse to build
skeleton methods. It does, how-
ever, demonstrate some very use-
ful techniques that can be applied
to creating custom coders to han-
dle your own pet coding peeves.
Figure 1 shows the utility in action.

A second common activity that
begged for automation was creat-
ing MessageBox() statements, which
required remembering (and
spelling!) the appropriate MB_???
constants to get the right style box.
To this end I created MBExpert
which puts up a dialog box to allow
you to create MessageBox() state-
ments. MBExpert uses some
slightly more sophisticated string
manipulations to get its work done,
but is otherwise similar to
MethGen – see Figure 2. Both can
be added to Delphi’s Tools menu
for easy access and the full source
is on the disk with this issue of
course.

I’ve included a couple of utility
units on the disk too, for your
edification and amazement!

EXPTTOOL.PAS is
one, it contains a
number of useful
utility routines for
accessing other
programs, includ-
ing definitions for a
few “undocmented”
Windows calls that
are surely so com-
mon and necessary
that they are very
unlikely to become
unsupported (I’ve
also used them in
Windows 95 and
they seem to work
fine). Both Meth-
Gen and MBExpert
make use of the
FindChild function
to locate the Delphi
code editor win-
dow. I discovered the TEditWindow
and TEditControl class names by
poking around with a Window
Class Inspector that I’m creating
based on several sources.

My FindPartialWindowTitle func-
tion, combined with one of the
several Delphi implementations of
the Visual Basic SendKeys() routine
(I use an enhanced version of the
one from Steve Teixeira and Xavier
Pacheco’s Delphi Developer’s
Guide; they have kindly agreed to
allow us to include the DLL on the
disk), give Delphi much of the same
simple automation capabilities
that VB programmers have been
enjoying all along. I’ve also created
StayOnTop and NoStayOnTop which
are put to good use in these custom
coders to keep them handy when
you need them.

The second unit included is
STRFUNC.PAS, which contains a
number of useful string manipula-
tion routines, a few of which are
used by the coders. I know supple-
mentary string function libraries
are common, so if you have one you
prefer, you can make the appropri-
ate uses clause and function call
changes.

Using MethGen
First, in the source editor, highlight
the name of the class you’re inter-
ested in and click MethGen’s
Acquire Class Name button. This
activates the FindChild routine
from the EXPTTOOL unit to find
the current Delphi code edit win-
dow, then sends it a message to
copy whatever is currently high-
lighted to the clipboard. MethGen
then uses a clipboard object to
place the text into the Class Name
edit box (you could always type it
in of course, but I’m lazy...).

Now highlight the method
title(s) in your class definition,
then click the Acquire Methods but-
ton, which (similarly to the Acquire
Class Name button) copies the
method titles into the Methods
TMemo. You can perform this action
several times to get methods that
aren’t declared consecutively.
Alternatively, you could copy the
entire class definition into the
TMemo and then just delete the
irrelevant parts. One thing I
couldn’t figure out how to do was
to poll the clipboard to find out the
size of the text it contains, so in the

➤ Figure 1: MethGen in action

22 The Delphi Magazine Issue 9

MethodsAquireBtnClick method I
had to pick some reasonably large
number to set the transfer buffer to
before retrieving the text. If any-
body knows how to find out how
much text the Clipboard is holding,
I’d like to know about it!

Pressing the Generate Skeletons
button takes each method title,
inserts the Class Name and a
period, appends a begin...end pair,
then places the result into the
Skeletons TMemo. Here you can
make any further alterations you
might want.

Now move the insertion point in
the code editor into the unit’s
implementation section, then press
MethGen’s Paste button, which will
dump the contents of the Skeletons
TMemo at the insertion point.

As you can see from the code on
the disk, MethGen is actually a
pretty simple program. The inter-
esting parts are probably the two
“Aquire” methods and the “Paste”
method which are shown in Listing
1 and use the FindChild function
from the EXPTTOOL unit to get the
HWnd of the Delphi code editor win-
dow in order to send it copy and
paste commands via SendMessage.

Using MBExpert
Once MBExpert is running, its use
should be pretty self-explanatory.
Default items are marked with an

procedure TMethGenFrm.ClassNameAcquireBtnClick(Sender: TObject);
begin
 SendMessage(FindChild(’TEditWindow’, ’TEditControl’), WM_COPY, 0, 0);
 ClassNameEdit.Text := Clipboard.AsText;
end;

procedure TMethGenFrm.MethodsAquireBtnClick(Sender: TObject);
const BufSize = 2048;
var TheBuf : PChar;
 TheLen : word;
begin
 SendMessage(FindChild(’TEditWindow’, ’TEditControl’), WM_COPY, 0, 0);
 GetMem(TheBuf, BufSize);
 Clipboard.GetTextBuf(TheBuf, BufSize);
 MethodsMemo.SetTextBuf(TheBuf);
 FreeMem(TheBuf, BufSize);
end;

procedure TMethGenFrm.PasteBtnClick(Sender: TObject);
var TheBuf : PChar;
 TheLen : word;
begin
 TheLen := SkeletonsMemo.GetTextLen;
 GetMem(TheBuf, TheLen);
 SkeletonsMemo.GetTextBuf(TheBuf, TheLen);
 Clipboard.SetTextBuf(TheBuf);
 FreeMem(TheBuf, TheLen);
 SendMessage(FindChild(’TEditWindow’, ’TEditControl’), WM_PASTE, 0, 0);
end;

asterisk. The Test
button pops up an
example message
box to show what
the final result will
look like (though
it doesn’t actually
do anything of
course). The Build
button generates
the code into the
Command Line field,
which allows you
to review if you
wish before past-
ing it into Delphi’s
code window. The
Format radio but-
tons determine
whether the code
generated makes
use of the Appli-
cation.MessageBox
(which doesn’t re-
quire the Handle
parameter), or a
plain API Message-
Box call, which
does. Picking the
API options enables the Handle
field; if nothing is entered, it
defaults to HWindow.

One potential area of confusion
here is the Title and Message fields.
If you’re going to use literal strings
for these parameters you have to
include the appropriate single
quotes in the field, otherwise
MBExpert won’t know to add them

and you’ll get a syntax error when
you compile.

What Now...?
I have some more grandiose plans
for these techniques. I’d like to
create a more automated method
generator and am investigating
using Delphi’s VCS interface to
help implement that.

I also created a very simple
macro language for Delphi (and
other text based applications) a
while back using the ScriptMaker
utility that comes with Norton
Desktop, mostly because of its
FindWindow and SendKeys capabili-
ties. Since I now have those
abilities in Delphi, I may redesign
the language in Delphi and try to
integrate it more fully with the IDE.
I’ll keep you posted.

Stephen Posey works at the
University of New Orleans, USA,
and can be contacted by email as
SLP@uno.edu

➤ Figure 2

➤ Listing 1

May 1996 The Delphi Magazine 23

	Using MethGen
	Using MBExpert
	What Now....?

